Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function
نویسندگان
چکیده
Fibronectin and certain polypeptide regions of this adhesive glycoprotein mediate cell attachment and spreading on various substrates. We explored the theoretical prediction that this adhesive protein could become a competitive inhibitor of fibronectin-mediated processes if present in solution at appropriately high concentrations. Fibronectin function was inhibited by purified plasma fibronectin at 5-10 mg/ml, by a 75,000-dalton cell-interaction fragment of the protein at 0.5-1 mg/ml, and even by two synthetic peptides containing a conserved, hydrophilic amino acid sequence at 0.1-0.5 mg/ml. Inhibition of fibronectin-dependent cell spreading was dose dependent, noncytotoxic, and reversible. It was competitive in nature, since increased quantities of substrate-adsorbed fibronectin or longer incubation periods decreased the inhibition. A peptide inhibitory for fibronectin-mediated cell spreading also inhibited fibronectin-mediated attachment of cells to type I collagen, but it did not affect concanavalin A-mediated spreading. These results demonstrate the potential of a cell adhesion molecule and its biologically active peptide fragments to act as competitive inhibitors, and they suggest that fibronectin may act by binding to a saturable cell surface receptor.
منابع مشابه
Fibronectin peptides in cell migration and wound repair.
a serious clinical problem; for example, decubitus and leg ulcers afflict roughly 5 million people in the US alone. Normal wound repair depends on molecules like fibronectin to promote cell adhesion and migration (1). This large adhesive glycoprotein provides a crucial substrate for many forms of cell migration , such as in embryonic migratory pathways and in the provisional matrix of healing w...
متن کاملBiochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin
Objective(s): The periodic binding of protein expressed by Mycobacterium tuberculosis H37Rv with the host cell receptor molecules i.e. fibronectin (Fn) is gaining significance because of its adhesive properties. The genome sequencing of M. tuberculosis H37Rv revealed that the proline-glutamic (PE) proteins contain polymorphic GC-rich repetitive sequences (PGRS) which have clinical importance i...
متن کاملMonoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly
Site-directed mutagenesis studies have suggested that additional peptide information in the central cell-binding domain of fibronectin besides the minimal Arg-Gly-Asp (RGD) sequence is required for its full adhesive activity. The nature of this second, synergistic site was analyzed further by protein chemical and immunological approaches using biological assays for adhesion, migration, and matr...
متن کاملBlood-borne fragments of fibronectin after thermal injury.
Fibronectin is an adhesive protein that can promote phagocytosis and endothelial cell adhesion. Plasma fibronectin declines following burn in animals and patients, potentially due to its complexing with circulating collagenous debris as well as its rapid binding to sites of tissue injury. Such depletion of fibronectin initiates an opsonic deficiency of the plasma. In view of the sensitivity of ...
متن کاملHuman fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells
The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 99 شماره
صفحات -
تاریخ انتشار 1984